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Scale dependency in the functional form of the distance  
decay relationship
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We examine a novel mathematical approach which posits that the decay of similarity in community composition 
with increasing distance (aka distance decay) can be modeled as the sum of individual species joint-probability vs 
distance relationships. Our model, supported by analyses of these curves from three datasets (North American breeding 
birds, North American taiga plants, and tropical forest trees), suggest that when sampling grain is large enough to 
avoid absences due to stochastic sampling effects, and/or sampling extent is large enough to generate species turnover 
through the deterministic crossing of environmental and/or geographical range limits, species joint-probability over 
increasing distance will generally exhibit exponential decay. However, at small scales where occurrence is driven more 
by stochastic sampling effects, species joint-probability curves exhibit a power-law decay form. Lacking a theoretical 
prediction of how individual species joint-probability relationships combine to generate community distance decay, 
we also performed a meta-analysis of 26 ecological and 4 human-system datasets, using non-linear regression to mean 
and quantile non-linear regression at tau  0.95 for linear, exponential, and power-law decay forms. These analyses 
demonstrate that the functional form of community distance decay – as shown by comparison of AIC ranks – is largely 
determined by observational scale, with power law decay prevailing within domains where the species pool remains 
constant, while exponential decay prevails at larger scales over which the species pool varies, paralleling the patterns 
predicted in our mathematical approach.

The decay of compositional similarity with increasing  
inter-observation distance (aka distance decay) is a ubiqui-
tous pattern found across a wide array of physical,  
biological, social and other complex systems (Tobler 1970, 
Nekola and Brown 2007). It has garnered considerable 
interest within the fields of community ecology (Condit 
et  al. 2002, Green et  al. 2004, Soininen et  al. 2007),  
macroecology (McKnight et  al. 2007, Blanchette et  al. 
2008, Qian et  al. 2009) and conservation biology (Bell 
2003, Steinitz et al. 2005), and has been suggested to shed 
important insights into underlying fundamental mecha-
nisms (Nekola and White 1999, Hubbell 2001, Tuomisto 
et al. 2003, Gilbert and Lechowicz 2004).

In spite of this interest, controversy exists regarding its 
expected functional form. While a number of empirical 
analyses have firmly established exponential decay (Nekola 
and White 1999, Qian et al. 2005, 2009, Jobe 2007), linear 
(Blanchette et  al. 2008, Perez-del-Olmo et  al. 2009) and 
power law (Harte et  al. 1999, Condit et  al. 2002, Green 
et  al. 2004) forms have also been documented. In spite  
of this, all theoretical derivations of the distance decay rela-
tionship (Harte and Kinzig 1997, Hubbell 2001, Chave  

and Leigh 2002, Houchmandzadeh 2008, Morlon et  al. 
2008) generate power-law or power-law-like forms.

Here we begin to develop analytical underpinnings for a 
theory of community distance decay based on joint- 
probabilities for individual species. We show that: 1) expec-
tation of exponential or power-law forms for individual 
species joint-probability curves is a function of sampling 
scale, and 2) the community distance decay curve is a sum 
of single species joint-probability curves. Because a theo-
retical prediction for the shape of community distance  
decay curves from individual species joint-probability curves 
is not analytically tractable (except in a few specific  
cases), we consider this issue through empirical meta- 
analysis of 26 community datasets collected over both  
spatial and temporal extents, covering a large range of eco-
systems (simulated data to abyssal plain to continental 
mountains, arctic tundra to tropics), taxa groups (including 
mammals, birds, lepidoptera, robber flies, land snails,  
vascular plants, bryophytes), sample grains (100 m2 –  
subcontinental and daily-yearly) and total extent (3–9000 km 
and 1–25 yr). Four human system examples are also consid-
ered (1 spatial, 3 temporal; Nekola and Brown 2007) to 
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identify if general patterns in community distance decay 
functional forms exist.

Individualistic model of distance decay

Single species distance decay

We begin with consideration with the decay of joint- 
probability (Palmer 2005) for a single species/agent/event 
with increasing inter-observation distance. Specifically, if 
comparing two plots L and M of the same size A at distance 
d apart (Fig. 1) for species i, then:

pi(dLM)  Prob{species i present at M |	  
        species i present at L}	 (1)

or more generally:

pi(d)  Prob{species present at any site distance	  
      d from a site where species i is present}	 (2)

While this definition has a clear relationship to the  
occupancy function used by numerous authors (Harte et al. 
1999, He and Legendre 2002), in these previous formula-
tions p has been a function of the plot area, A, rather than 
the distance, d, from reference plot L. Thus, our approach is 
the first to explicitly consider spatial structure.

It is clear that under biologically realistic conditions 
where species have finite ranges, pi(d ) needs to fit the  
following criteria: 1) pi(0)  1; 2) pi()  0; 3) pi(dAB)  
 pi(dBA) (i.e. isotropy or direction does not matter); 4)  
pi(d1)   pi(d2) if d1  d2 (i.e. pi monotonically decreasing);  
5) pi(d1  d2)  g(p(d1), p(d2)) for some functional form g  
if d1 and d2 are linear and contiguous as shown in Fig. 1  
(i.e. decomposability with distance). Note that 1, 2 and  
4 combined can be used to show that 0  pi(d )  1 if 
0  d  ∞.

There are an infinite number of functional forms that  
fit these criteria. Three that have been commonly used  
to analyze community distance decay (Nekola and White 
1999, Soininen et  al. 2007) include the linear [pi(d )   
1 2 cd ], exponential [pi(d )  exp(2cd )], and power law 
[pi(d )  d2c]. Additionally, Harte (2011) suggests a loga-
rithmic decay [pi(d )  1 2 c*log(d )] form. All contain a 
single parameter, c, which denotes decay rate. Note that the 
power law form violates criterion 1, the linear form violates 
criterion 2, while the logarithmic form violates both. As a 
result, these functional forms can in practice be used only 
over limited intervals: [0, dmax] where dmax  d at which 
pi(d )  0 for the linear, [∈, ∞] for the power law, and [∈, 
dmax] for the logarithmic. While Palmer (2005) calculated 
pi(d ) for tropical trees at the La Selva Biological Station in 
Costa Rica, he did not propose that it take on any particular 

mathematical form. However, his plot of pi(d) across all spe-
cies and sites appears to demonstrate an exponential trace.

What form should g in criterion 5 take? This function 
describes how pi should behave when a long distance d is 
decomposed into two smaller distances d1 and d2 (where 
d1  d2  d and lie along a straight line; Fig. 1). Clearly it 
should be commutative and associative. The most obvious, 
simple forms are g(x,y)  x 1 y or g(x,y)  x*y. However, the 
additive form violates criterion 4 [e.g. p(6)  p(4  2)  p(4)  
1 p(2)  p(4) but p(6)  p(4)] and can easily produce pi   1. 
The multiplicative form fits well with our intuitive sense of 
how similarity decays [i.e. pi(d1  d2)   pi(d1)*pi(d2)], and is 
essentially the law of independent probabilistic events [P(A 
and B)  P(A)*P(B)]. Note that pi(d1  d2)  pi(d1)pi(d2) can 
only be satisified by pi(d )  exp(cd ) with criteria 1 and 2, 
requiring that c  0. A negative exponential form for the 
decay of joint occurrence probability with increasing dis-
tance thus conforms well to criteria 1–5.

It is instructive to proceed with a more rigorous  
examination of the form of g. Considering the straight line 
connecting L to M to N in Fig. 1, via the law of total prob-
ability (Karlin and Taylor 1975):

P(present at N|present at L)
    P(present at N|present at M)
     3 P(present at M|present at L) 	  
    1 P(present at N|NOT present at M)	  
    3 P(NOT present at M| present at L)	

(3)

or:

pi(d)  pi(d2)pi(d1)  X(d2)(1 2 pi(d1))	 (4)

where: X(d) is the probability of a species being present at 
one point conditioned on it NOT being present at another 
point [note this is not simply 1 2 pi(d)].

More simply:

pi(d)  pi(d1)pi(d2)  Y(d1,d2)	 (5)

where Y(d1,d2)  Prob{present at N, absent at M|present  
at L} or essentially the probability of encountering an  
‘occurrence hole’ (sensu Rapoport 1982, Hurlbert and White 
2007) within the range of species i. Y  0 when species i is 
never absent at M if present at L and N. In such cases,  
we have the multiplicative form for g and pi(d)  exp(2cd). 
If Y ≠ 0, then g is more complex, and pi(d) is not a simple 
exponential.

Community distance decay

Assuming pi(d ) is exponential for one species, then what  
distance decay form should be expected across a community 
assemblage? As is common in theoretical ecology, we  
will work with the Sørenson similarity measure due to its 
tractable mathematics (Plotkin and Muller-Landau 2002, 
Morlon et  al. 2008). Let SLM be the number of species  
found in both plots L and M, while SL is the number of  
species found in plot L and similarly for SM. We assume 
approximately S  SL  SM. because systematic changes in 
richness will lead to bias in parameter estimation (Jobe 

dMN dLM 
L M N 

dLN

Figure 1. Heuristic diagram demonstrating the relationship  
between sample plots and distances used in the theoretical model.
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2007). Then Sørenson (dLM)  Sørenson (L,M)  SLM/average 
(SL,SM). If we sum the probability that a species is present in 
M over all species present in L, this gives:

S rensonø ( ) ( )L,M p d S
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where Ei is the expectation (or averaging) operator taken 
with respect to i or over all species. We call this the commu-
nity aggregated distance decay function. This makes the 
strong assumption that the joint probability decay is inde-
pendent between all species.

A sum of exponentials as found in Eq. 6 can take on a  
vast variety of shapes, dependent entirely on the distribution 
of ci values. If we treat ci as a random variable, C, from which 
the ci are drawn and using the tools for calculating the 
expected value of a function of a random variable (Lindgren 
1976 p. 113) we have:

S rø ( ) exp( ) exp( ) ( )d E c d xd f x dxi i   ∫ 	
(7)

Where f(x) is the pdf of the random variable describing  
the distribution of C. A uniform distribution for C across [0, 
c] yields 1 2 [exp(2c*d ))/(c*d)]. In the limiting case  
of c having a Dirac delta distribution (i.e. ci is constant  
with no variation), then Eq. (6) and (7) give community 
Sørenson similarity as an exponentially decaying function of 
distance. Assuming C is distributed according to an expo-
nential distribution yields Sør(d )  c/(c  d ) while assum-
ing C is distributed according to a power law yields 
Sør(d )  G(c)c/(bc*dc). However, as will be shown in the 
results, C is strongly right-truncated, making a Beta distribu-
tion the most likely. While this does not yield an analytically 
solvable integral, a partial understanding can realized by  
taking a Taylor-series expansion of Ei exp(2cid). Let C now 
be the mean value of ci (C  ci

–) and Δi  ci 2 C, with the 
expansion around C:

being the occupancy rate for species i (i.e. the fraction of 
sites supporting species i) or equivalently the probability  
that species i is found at site L. Then we have:

S rø ( ) exp( ) exp( )d
S
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We call this the weighted community aggregate distance 
decay function. This curve should closely approximate the 
traditional community-level decay of similarity curve  
which is generated by calculating pairwise similarity between 
samples (Nekola and White 1999).

Model assumptions

Two main assumptions underlie our approach. First, to  
produce an exponential decay of joint-probability over 
increasing distance for a single species we assumed that 
Y(d1,d2)  0 or equivalently that a species must occur at  
M if present at L and N. In effect Y informs about the 
probability that a sample plot falls inside an occurrence 
hole within a species range. The value of Y should show 
strong scale dependence: if sample grain is small with sig-
nificant sampling error and extent does not exceed the 
environmental and/or geographic range limits of species 
within the pool, then it is likely that the main reason for 
compositional turnover will be sampling effects (Nekola 
and White 1999). In such instances Y ≠ 0, and because in 
such situations pi(d) is not exponential, this form will  
also not provide a good fit to the community data. The 
expected shape in such cases should initially show a more 
rapid decrease in joint-probability than the exponential 
expectation because of occurrence holes, but will then ulti-
mately asymptote  0 because the probability of a given 
species within the pool is also  0. Although not a rigorous 
proof, at a minimum the above demonstrates that a more 
power-law like than exponential form would result from 
cases where Y ≠ 0. Multiple theoretical distance decay mod-
els assuming such small grains and uniform species pools 
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The infinite series inside the brackets is a function of d that 
alternates in sign, with kn/n! converging to zero for large 
enough n (where k  Δid). Thus, while the series does  
converge, it occurs in a way that depends on Δi and d. In 
particular if Δid is  1 over much of the range of interest  
for d, the possibility exists for very slow convergence and 
strong deviations from exp(2Cd). Nothing further can be 
said about this situation without a detailed knowledge of  
the distribution and magnitude of Δi relative to d. After 
examining empirical distributions in the Results, we will 
present further analysis in the Discussion as to when conver-
gence on exp(2Cd) may be expected.

Equation 6 can be expanded for the case where the  
evaluated species pool is not just the species present at L but 
includes all taxa in the regional pool. To do this, we redefine 
S to be the richness of the regional species pool, with wi 

have all produced power law decay forms (Harte and Kinzig 
1997, Chave and Leigh 2002, Houchmandzadeh 2008, 
Morlon et al. 2008).

When sample grain is large relative to the organism/agent/
event (making for guaranteed detection), with extent being 
large enough to pass beyond species environmental and/or 
geographic range limits (allowing the community pool to 
vary across the sample), then the main cause of species turn-
over will be the exceeding of species distributional limits, 
minimizing the chance that a species will be absent at M  
but present at L and N. In these situations Y  0, and the 
exponential form should represent a good approximation.  
Note that these conditions may be met at various absolute 
scales. For instance, if strong local spatial or temporal gradi-
ents exist, even over very limited extents the community pool 
will not be uniform and the exponential form should occur.
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detection error and year-on-year variability, we took average 
abundance over the years 2003–2007, and used only the 
1430 routes that had a quality code reflecting appropriate 
weather and observer ability for all five years. Thus, a bird 
was counted as being present at a given route if it appeared 
at least once in five years. The third dataset was the Barro 
Colorado Island tree plot containing 225 species (Condit 
et al. 2000). Every tree  10 cm DBH was recorded within 
each of the 50 one hectare plots. Distance was recorded 
between hectare midpoints.

Due to their continental extents, we a priori expect  
the LaRoi and BBS datasets to have individual site composi-
tions drawn from varying species pools. Decay of individual 
species joint-probabilities in these data should thus  
generally take on an exponential form. However, because the 
BCI dataset covers only a 1 km extent, all samples are likely 
to be drawn from only two nested species pools (young 
within old forest; Svenning et  al. 2004). In this situation, 
species absences are likely due to stochastic sampling  
effects and/or disturbance history, with a power-law like 
decay-form prevailing. In all three cases the community  
distance decay curve should be the sum of the individual 
species decay curves, although the fit should be worse for the 
BCI data because of the greater impact of stochastic sam-
pling errors. While no explicit prediction can be made  
for the functional form of the community distance decay  
curve, the heuristic considerations given above suggest that 
an exponential form may be more likely at large grains  
and/or extents which sample across varying species pools. 
We also predict the weighted community aggregate curve 
should perform better for the La Roi and BBS data since 
they have large enough extents/strong enough gradients to 
exceed the limits of individual species, while conversely the 
BCI data should be better fit by an unweighted curve.

To test the individual species portion of the model (pre-
diction 1), for each dataset we fit an exponential decay 
curve to the each species joint-probability by calculating 
similarity (1 if the species was present in both plots; 0 of 
not) and distance between each occupied site and all  
others. Because calculations were only conducted from 
occupied sites, we constrained similarity to equal 1 at the 
origin and fit only a single parameter to the decay function. 
Other functional forms (e.g. linear, power law, logarithmic) 
were not fit because of their violations of criteria 1 and/or 
2. We then calculated mean similarity across distance bins 
of 200 km (LaRoi and BBS) or 200 m (BCI). Due to the 
computational challenges in the 1403 site   600 species 
BBS data (reflecting a total potential number of ~ 6  108 
calculations), prior to model fit we randomly removed 
absent sites in order to generate occupancy rates of approx-
imately 10%. We then sampled 10 000 individuals from  
all site by site pairs. We recorded the c and r2 value for  
each species. To calculate the community aggregated curve 
(Eq. 6), we predicted values every 200 km or 200 m, took 
their average, and plotted a line through the data. We cal-
culated the weighted community aggregate curve (Eq. 7) 
similarly except that each species was weighted by its 
observed occupancy. Because singleton and doubleton spe-
cies do not possess enough degrees of freedom to accurately 
fit an exponential model (singletons are points in space 
while doubletons can only demonstrate linear patterns), we 

The second major assumption is that the decay of each 
species joint-probability is independent of that exhibited by 
others. This allows summing of individual decay curves  
to produce Eq. 6. Such an assumption of independence  
between co-occurring species is one of the foundational  
bases of modern community ecology (Gleason 1926, Curtis  
1955, Whittaker 1975) that accurately reproduces a number 
of community patterns (McGill 2010, 2011, He and 
Legendre 2002, Green and Plotkin 2007). Although species 
pairs can be identified which clearly show non-independent 
distributions (e.g. red bellied woodpecker and red-headed 
woodpecker – Root 1989; American beach and its obligate 
parasite beachdrops – Voss 1985), these interactions repre-
sent such a small fraction of all possible pairwise interactions 
(Barker and Mayhill 1999) that the assumption of indepen-
dence is a valid approximation.

Summary of model predictions

1) Individual species will exhibit exponential decay in their 
joint-probability with increasing distance if and only if 
observational scale is large enough to allow a varying species 
pool and to avoid quasi-stochastic occurrence holes.

2) The Sørenson decay of community similarity is equiva-
lent to the occupancy-weighted community average of the 
individual pi(d) curves in the regional species pool.

3) The weighted community aggregate curve (Eq. 8) will 
fit better than the unweighted curve in cases where species 
are not equally likely across the species pool (or equivalently 
that the species pool changes over the extent studied), but 
will fit worse when the species pool is constant across sites.

4) The functional form for community distance decay 
[Sør(d)] depends on the distribution of ci, the decay rates  
of for individual joint-probability curves. Unfortunately  
this distribution has never been studied and we have no 
empirical knowledge of its shape, making impossible the 
prediction of community distance decay functional form. 
Even when all single species joint-probability curves are 
exponential, community decay curves of innumerable forms 
can be produced.

Methods

Test of model predictions

Three different datasets were used to test the general accu-
racy of our approach. The first is the vascular plant data  
of LaRoi (1967), which was sampled from 34 nine-ha 
(300  300 m) mature, undisturbed upland white spruce 
forest plots at relatively equal distances across boreal North 
America. A total of 220 vascular plant species were encoun-
tered, with individual plot richness ranging from 19–56. 
The second is the North American Breeding Bird Survey 
(BBS), which is run annually at over 2000 routes across the 
continental US and southern Canada (Sauer et al. 2011). A 
3-min point count is taken every half mile (approximately 
0.8 km) for 50 stops along a transect of 25 miles (approxi-
mately 40 km). An individual route typically has 50–100 
bird species detected and overall almost 600 species of  
birds have been observed at least once. To avoid issues with 
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Preserve, Linn County, Iowa (F. Olsen pers comm.); and 
seasonal robberfly emergences at the Sevilleta LTER  
(H. Lease pers. comm.). Representative human-system 
datasets include: concert setlists for Cowboy Junkies 
( www.setlist.com ) and Phish ( www.ihoz.com/ 
PhishStats.html ) performances; all commercially avail-
able garden vegetable varieties in the US and Canada as 
reported by the Garden Seed Inventory of the Seed Savers 
Exchange; all ingredients reported for the cuisines of 
Ethiopia, Hungary, India, Iran, Ireland, Korea, Mexico, 
Norway, Puerto Rico, and Thailand (Smith 1990). The 
Cowboy Junkies setlist, Garden Seed Inventory, and global 
cuisine distance decay analyses were previously reported in 
Nekola and Brown (2007).

For each of these datasets, Jaccard similarity was  
calculated between each pairwise combination of samples, 
while distance was calculated as the linear difference in 
space or time between observations. The Jaccard metric was 
employed because of its common use in distance decay 
analyses (Nekola and White 1999). The Jaccard and 
Sørenson indices differ only slightly in their denominator 
values, and perform in a highly similar (and for all intents, 
identical) fashion. These data were then subjected to  
non-linear regression to the mean using the ‘nls’ routine in 
R, and quantile regression using the ‘nlrq’ routine in R  
with tau  0.95. Quantile regression was used because the 
central tendency may not be as important in the distance 
decay relationship as the shape of the upper bound 
(Rocchini and Cade 2008). For each of these regression 
approaches three different functional forms were fit to the 
data: Sd  Si 2 cd (linear decay); Sd  Si e2cd (exponential 
decay) and Sd  Ad2c (power-law decay) where Sd  inter-
sample similarity at distance d; Si  initial similarity or 
nugget (Nekola and White 1999); A  arbitrary intercept; 
d  intersample distance; c  rate of similarity change.  
We did not fit logarithmic decay [Sd  a 2 c(log(d))] 
because we found it to neither outperform power-law fits 
in the three intensively studied datasets (LaRoi, BBS, BCI) 
nor in those data which appeared by eye to most likely to 
express the logarithmic functional form (Tallgrass Prairie 
Preserve, Iowa Butterfly County occurrences, Portal 
rodents, and Cowboy Junkes setlists).

AIC values were calculated for each regression and ranked 
from 1 (least) to 3 (largest) across the three functional forms 
for each dataset. We then constructed a contingency table  
for each of the regression methods, showing 1st, 2nd, and 
3rd AIC ranks vs linear, exponential, and power-law fits.  
A Fisher-exact test was conducted on these tables to deter-
mine if cell frequency violated null expectations.

Results

Model test

All three model predictions were confirmed across the three 
datasets. In general, the exponential decay form was found 
to be a good approximation for taiga vascular plant and 
continental bird species joint-probabilities with increasing 
observational distance (Fig. 2). While the vast majority of 
LaRoi and BBS species were fit by an exponential model 

also calculated a community aggregate curve in which each 
species was equally weighted (wi  1/S) after removal of 
singletons and doubletons. We term this the filtered com-
munity aggregate curve.

The traditional community distance decay curve was also 
calculated for each dataset. Because of its use in model for-
mulation, Sørenson similarity was used. Since the total  
BBS data would represent almost 2 000 000 pairwise com-
parisons, we limited analysis to 10 000 randomly-drawn 
pairs. To these data we then fit a linear decay curve using 
ordinary least squares (OLS) regression and an exponential 
and power-law decay curves using non-linear least squares 
(NLS) regression. Note that under the assumption of normal 
errors, OLS and NLS give maximum likelihood estimates 
allowing the use of the Akiake information criteria (AIC), 
which we used to compare the three models. We also plotted 
a LOESS line on these plots to allow for easy visual com-
parison of the central tendency in the empirical data vs the 
community aggregated curves.

Meta-analysis of community similarity datasets

Lacking a theoretical prediction for the functional form of 
community distance decay, we also conducted a meta- 
analysis of 26 ecological and 4 human-system datasets. Two 
datasets represent simulated community turnover data using 
COMPAS (Minchin 1987), with composition lists being 
generated for 50 randomly-spaced sites along a single gradi-
ent containing 20 species. Two different turnover scenarios 
were used: constant turnover where all species possess the 
same modal abundance, standard deviation, and are equally 
spaced along the gradient, and lognormal turnover, where 
species modes, standard deviations, and gradient placement 
follow a lognormal distribution. The remaining data are 
empirical, represent examples of both spatial and temporal 
decay, and attempt to maximize ecosystem range, taxa 
groups, sample grains, and extents. Information regarding 
the habitat type, taxa group, maximum extent, sample grain, 
number of samples, and additional notes on these datasets is 
found in Table 2. These data include: Galapagos Islands  
vascular plant flora (Preston 1962); North America upland 
taiga vascular plants (LaRoi 1967) and bryophytes  
(LaRoi and Stringer 1976); fen-restricted vascular plants in 
northeastern Iowa (Nekola 1994); Martha’s Head to 
Bermuda abyssal plain bivalves (Allen and Sanders 1996); 
Belize terra firma tropical forest (Bird 1998); entire vascular 
plant floras for all algific talus slope sites along Buck Creek, 
Clayton County, Iowa (Nekola 1999); Peruvian and 
Panamanian terra firma forest (Condit et al. 2002); Barro 
Colorado Island terra firma forest (Condit et  al. 2000);  
New Zealand land snails (Barker 2005); eastern North 
American and Asian vascular plants (Qian et al. 2005); Iowa 
county butterfly faunas (Schlicht et al. 2007); small rodent 
and winter annuals plants at Portal, Arizona (Ernest et al. 
2009); eastern North American rock outcrop, Atlantic 
coastal plain acidophile, and southwestern USA montane 
land snail faunas (Nekola 2010); North American Breeding 
Bird Survey (Sauer et  al. 2011); southern Flint Hills tall-
grass prairie vascular plants (McGlinn and Palmer 2011); 
seasonal butterfly and skipper emergences at the Rock Island 
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parameters in the weighted community aggregate curve 
were adjusted to make them fit the true Sørenson decay 
curve. Although no community aggregate curve provides a 
good fit to the empirical BCI community decay data, the 
unweighted curve is a better fit, confirming prediction 3. 
Linear, exponential and power law forms were then fit to the 
empirical Sørenson community distance decay (Fig. 4). 
Community distance decay in the LaRoi and BBS data are 
best fit by the exponential form, while the BCI data is best 
fit by a power law (Table 1).

Meta-analyses

All 26 ecological and 4 human-system datasets demonstrated 
a negative relationship between community similarity and 

with r2  0.9, a noticeably higher frequency of poor fits 
were noted in the BCI data (Fig. 3). These results confirm 
prediction 1. It should be noted, however, that six BBS  
species (1% of total), present at only a handful of sites,  
demonstrated increasing similarity with distance. These 
were removed from subsequent analysis. The distribution of 
ci values was unimodal with a strong right truncation,  
making exponential and power law distributions for C a 
poor description of the empirical data (Fig. 3). Visual  
comparison of the weighted community aggregate vs the 
LOESS line for the true Sørenson decay (Fig. 4) shows a 
remarkable convergence in the LaRoi and BBS data, con-
firming prediction 2. Table 1 also demonstrates that the 
community weighted aggregate produces exponential decay 
parameters that are very close to the observed true commu-
nity decay values. This is quite remarkable given that no 
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Figure 2. Individual species joint-probability decay with distance [pi(d )] curves for arbitrary species. Blue dots are observed similarities.  
Red line is LOESS smoothed regression. Left column represents two species from the LaRoi dataset. Middle column represents two species 
from the Breeding Bird Survey dataset. Right column represents two species from the Barro Colorado Island dataset. Note that for a few 
species (like Viburnum edule) exponential decay is a poor fit. However, as seen in the bottom row of Fig. 3 there only a few such species.
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Bird Survey, and the right column is for the Barro Colorado Island data.
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distance (Table 2). Based on AIC ranks, each of the three 
functional forms were found to provide a best-fit to at least 
some of the ecological datasets under both non-linear  
regression to mean and quantile regression to tau  0.95. 
However, in all four human-system datasets the power-law 
model was best fit to the data, followed by the exponential 
model, with the linear model providing the poorest fit. For 
ecological systems exponential decay was best fit 14 times to 
the mean, and 13 times to tau  0.95 (Table 3). Power- 
law forms were best fit in 8 and 6 cases, respectively, while 
linear was the best fit in 4 and 7 cases. While exponential 
equations never provided the poorest fits, in almost half of 
the datasets linear fits performed the most poorly (13 and 
10, respectively), while power-law fits performed worst  
in at least 50% of datasets (13 and 16, respectively). Fisher-
exact tests on these contingency tables indicate a highly  
significant (p  0.00002 and p  0.000014) deviation of 
cell frequencies from a uniform null model.

Discussion

These analyses clearly demonstrate that the distance  
decay of community similarity reflects the aggregate of 
individual species joint-probability decay functions across 
the species pool. As shown in both large-scale detailed  
datasets (BBS, LaRoi), when the grain size and/or extent 
are large enough to generate exponential individual joint-
probability decay, the community decay curve is also best 
fit by this form. This outcome is replicated in the meta-
analysis, where large scale samples crossing into multiple 
species pools also exhibited exponential community dis-
tance decay. Examples include: simulated communities 
along a strong environmental gradient; vascular plant  
flora of the Galapagos archipelago; vascular plant and bryo-
phyte assemblages across boreal North America; vascular 
plants of North American and Asian temperate forests; 
North American Atlantic coastal plain land snails; BBS 
data; and the adult emergence of both butterflies/skippers 
and robberflies along a seasonal gradient.

0 2000 4000 6000
0

0.5

1

Distance (km)

So
re

ns
on

LaRoi(A)

(B)

(C)

 

 

0 2000 4000 6000 8000
0

0.5

1

Distance (km)

So
re

ns
on

BBS

 

 

0 200 400 600 800 1000
0.4

0.6

0.8

1

Distance (km)

So
re

ns
on

BCI

 

 

Raw Data
LOESS
Exponential
Power
CommAgg
CommAgg Wtd
CommAgg Filt

Figure 4. Empirical distance decay relationships, with each  
blue dot representing a plot pair. Red solid line shows LOESS fit. 
Red dash-dotted red line shows an exponential fit. Red dotted line 
shows a power law fit. The green lines show the community aggre-
gated curves. The solid green line equally considers all species  
(i.e. Eq. 6). The dotted green line weights species by their occu-
pancy (i.e. Eq. 7). The dash-dotted line includes all species equally 
but eliminates species found in 2 or fewer sites. (A) LaRoi boreal 
plant data. (B) North American Breeding Bird Survey (note only  
10 000 random pairs were used out of the over 2 000 000 possible). 
(C) Barro Colorado Island data.

Table 1. Summary of results for three datasets.

True Community aggregate Weighted community 
aggregate

C AIC C AIC C AIC

LaRoi
Linear 20.0001 22578.8 20.00012 2125.4 20.0001 2142.4
Exponential 20.00027 22590.4 20.00056 2183.5 20.00032 2185.1
Power 20.286 22355.1 20.482 2147.0 20.353 2149.4

BBS
Linear 20.00011 238294 20.00007 2156.0 20.00008 2167.5
Exponential 20.00039 239287 20.00047 2202.3 20.00034 2215.1
Power 20.370 237635 20.484 2211.5 20.409 2199.0

BCI
Linear 20.00006 27646 20.00039 231.0 20.00021 243.2
Exponential 20.00009 27647 20.00059 234.0 20.00024 245.4
Power 20.0367 27677 20.202 239.6 20.085 240.9



316

Ta
bl

e 
2.

 S
ou

rc
e,

 s
ys

te
m

, s
am

pl
e 

sc
al

e,
 a

nd
 r

eg
re

ss
io

n 
in

fo
rm

at
io

n 
fo

r 
th

e 
an

al
yz

ed
 d

at
as

et
s.

 T
he

 u
pp

er
 A

IC
 v

al
ue

s 
an

d 
ra

nk
s 

re
pr

es
en

t s
ta

tis
tic

s 
ge

ne
ra

te
d 

fr
om

 n
on

-l
in

ea
r 

re
gr

es
si

on
 to

 m
ea

n,
 w

hi
le

 th
e 

lo
w

er
 v

al
ue

s 
re

pr
es

en
t s

ta
tis

tic
s 

ge
ne

ra
te

d 
fr

om
 q

ua
nt

ile
 n

on
-l

in
ea

r 
re

gr
es

si
on

 fo
r 

ta
u 


 0

.9
5.

N
o.

 
sa

m
pl

es

A
IC

 v
al

ue
/r

an
k 

or
de

r

So
ur

ce
Lo

ca
tio

n
H

ab
ita

t
Ta

xa
 g

ro
up

M
ax

 E
xt

en
t

G
ra

in
N

ot
es

Li
ne

ar
Ex

po
ne

nt
ia

l
Po

w
er

C
O

M
PA

S
Si

m
ul

at
ed

50
C

on
st

an
t t

ur
no

ve
r

2
36

65
.7

/2
47

30
.4

/2
2

39
56

.1
/1

38
37

.2
/1

2
14

78
.3

/3
54

30
.9

/3
C

O
M

PA
S

Si
m

ul
at

ed
50

Lo
gn

or
m

al
 tu

rn
ov

er
2

13
17

.6
/2

70
18

.5
/2

2
19

76
.0

/1
69

37
.4

/1
2

72
1.

0/
3

73
72

.3
/3

Pr
es

to
n 

19
62

G
al

ap
ag

os
 

Is
la

nd
s

V
ol

ca
ni

c 
ar

ch
ip

el
ag

o
V

as
cu

la
r 

pl
an

ts
28

6.
2 

km
1.

1–
46

40
 k

m
2

18
2

22
2.

7/
2

51
.0

/1
2

22
4.

6/
1

51
.6

/2
2

20
6.

7/
3

61
.5

/3
La

R
oi

 1
96

7
N

or
th

 
A

m
er

ic
a

U
pl

an
d 

ta
ig

a
V

as
cu

la
r 

pl
an

ts
56

87
.4

 k
m

9 
ha

34
2

12
12

.6
/3

17
70

.0
/2

2
12

44
.1

/1
17

29
.3

/1
2

10
27

.2
/2

21
16

.4
/3

La
R

oi
 a

nd
 S

tr
in

ge
r 

19
76

N
or

th
 

A
m

er
ic

a
U

pl
an

d 
ta

ig
a

B
ry

op
hy

te
s

56
87

.4
 k

m
9 

ha
34

2
12

05
.1

/2
18

10
.7

/2
2

12
21

.7
/1

18
04

.4
/1

2
11

22
.2

/3
19

19
.9

/3
N

ek
ol

a 
19

94
N

or
th

ea
st

er
n 

Io
w

a
Fe

n
Sp

ec
ia

lis
t 

va
sc

ul
ar

 
pl

an
ts

25
4.

0 
km

0.
1–

50
.1

 h
a

10
2

91
.1

/1
2

91
.7

/1
2

91
.0

/2
2

90
.7

/2
2

89
.7

/3
2

87
.4

/3

A
lle

n 
an

d 
Sa

nd
er

s 
19

96
A

tla
nt

ic
 

ab
ys

sa
l 

pl
ai

n

To
ta

l f
au

na
Pr

ot
ob

ra
nc

h 
bi

va
lv

es
77

7.
5 

km
ca

 0
.1

 h
a

21


 3
00

0 
m

 d
ep

th
 o

nl
y

2
28

6.
8/

1
49

8.
3/

1
2

27
4.

4/
2

50
1.

9/
2

2
20

8.
7/

3
52

2.
6/

3

B
ir

d 
19

98
B

el
iz

e
Tr

op
ic

al
 fo

re
st

C
an

op
y 

tr
ee

s
20

5.
5 

km
1 

ha
30

2
79

8.
2/

3
12

90
.1

/3
2

81
0.

0/
2

12
82

.6
/2

2
94

7.
6/

1
10

68
.2

/1
N

ek
ol

a 
19

99
B

uc
k 

C
re

ek
 

va
lle

y,
 Io

w
a

A
lg

ifi
c 

ta
lu

s 
sl

op
e

V
as

cu
la

r 
pl

an
ts

3.
1 

km
0.

12
5–

1 
ha

7
2

83
.1

/1
2

10
9.

2/
1

2
82

.9
/2

2
10

9.
1/

2
2

77
.6

/3
2

10
7.

5/
3

C
on

di
t e

t a
l. 

20
00

B
ar

ro
 

C
ol

or
ad

o 
Is

la
nd

Tr
op

ic
al

 fo
re

st
Tr

ee
s 

  
10

 c
m

 d
bh

1 
km

1 
ha

50
2

41
67

.7
/3

2
13

44
6/

3
2

41
68

.8
/2

2
13

44
8/

2
2

41
99

.0
/1

2
13

49
6/

1

C
on

di
t e

t a
l. 

20
02

Pa
na

m
a

Tr
op

ic
al

 fo
re

st
C

an
op

y 
tr

ee
s

11
0.

6 
km

1 
ha

10
0

2
90

45
.8

/3
38

96
9.

4/
3

2
11

85
0/

1
37

66
7.

5/
1

2
11

12
5/

2
37

82
0.

6/
2

C
on

di
t e

t a
l. 

20
02

Pe
ru

Tr
op

ic
al

 fo
re

st
C

an
op

y 
tr

ee
s

10
2.

2 
km

1 
ha

15
2

27
5.

4/
3

2
10

5.
6/

3
2

27
6.

1/
2

2
10

7.
8/

2
2

30
5.

8/
1

2
13

6.
2/

1
B

ar
ke

r 
20

05
N

ew
 Z

ea
la

nd
To

ta
l f

au
na

La
nd

 s
na

ils
15

90
.9

 k
m

28
2

46
0.

6/
2

11
97

.3
/1

2
46

3.
0/

1
12

05
.8

/2
2

41
6.

5/
3

13
71

.6
/3

Q
ia

n 
et

 a
l. 

20
05

E 
N

or
th

 
A

m
er

ic
a

To
ta

l fl
or

a
V

as
cu

la
r 

pl
an

ts
18

95
.3

 k
m

67
00

0–
24

9 
00

0 
km

2
25

47
 c

ho
se

n 
 

co
m

pa
ri

so
ns

2
64

.6
/2

2
10

7.
2/

1
2

67
.0

/1
2

10
6.

6/
2

2
64

.3
/3

2
38

.3
/3

Q
ia

n 
et

 a
l. 

20
05

E 
A

si
a

To
ta

l fl
or

a
V

as
cu

la
r 

pl
an

ts
18

70
.6

 k
m

67
00

0–
24

9 
00

0 
km

2
18

40
 c

ho
se

n 
 

co
m

pa
ri

so
ns

2
61

.4
/3

2
93

.0
/2

2
76

.2
/1

2
11

6.
9/

1
2

70
.9

/2
2

10
.2

/3
Sc

hl
ic

ht
 e

t a
l. 

20
07

Io
w

a
C

ou
nt

y 
fa

un
as

B
ut

te
rfl

ie
s 

an
d 

sk
ip

pe
rs

50
2.

1 
km

10
42

–2
52

4 
km

2
60

Li
m

ite
d 

to
 w

el
l 

sa
m

pl
ed

 (4
0 


 ta

xa
) 

co
un

tie
s

2
39

73
.9

/3
98

40
.0

/3
2

39
75

.8
/2

98
39

.1
/2

2
39

82
.2

/1
98

38
.4

/1

Er
ne

st
 e

t a
l. 

20
09

Po
rt

al
, 

A
ri

zo
na

D
es

er
t s

cr
ub

 
an

d 
gr

as
sl

an
d

W
in

te
r 

an
nu

al
 

pl
an

ts

16
 y

r
Se

as
on

 s
um

m
ar

y 
fo

r 
25

0 
m

2
17

Pl
ot

 n
o.

 2
2 

fr
om

 
19

89
–2

00
5

10
.4

/3
26

4.
7/

3
10

.3
/2

26
5.

3/
1

9.
7/

1
26

5.
4/

2

Er
ne

st
 e

t a
l. 

20
09

Po
rt

al
, 

A
ri

zo
na

D
es

er
t s

cr
ub

 
an

d 
gr

as
sl

an
d

R
od

en
ts

25
 y

r
Se

as
on

 s
um

m
ar

y 
fo

r 
25

0 
m

2
26

Pl
ot

 n
o.

 2
2 

fr
om

 
19

76
–2

00
5

2
30

1.
9/

3
12

27
.5

/3
2

31
0.

9/
2

12
19

.0
/2

2
32

6.
0/

1
11

97
.8

/1

(C
on

tin
ue

d)



317

Ta
bl

e 
2.

 (C
on

tin
ue

d)
.

N
o.

 
sa

m
pl

es

A
IC

 v
al

ue
/r

an
k 

or
de

r

So
ur

ce
Lo

ca
tio

n
H

ab
ita

t
Ta

xa
 g

ro
up

M
ax

 E
xt

en
t

G
ra

in
N

ot
es

Li
ne

ar
Ex

po
ne

nt
ia

l
Po

w
er

N
ek

ol
a 

20
10

U
S 

A
tla

nt
ic

 
C

oa
st

A
ci

d 
ha

bi
ta

ts
La

nd
 s

na
ils

20
13

 k
m

10
 0

00
 m

2
15

2
14

7.
1/

2
70

.9
/2

2
14

8.
5/

1
69

.9
/1

2
14

6.
5/

3
72

.0
/3

N
ek

ol
a 

20
10

E 
N

or
th

 
A

m
er

ic
a

R
oc

k 
ou

tc
ro

p
La

nd
 s

na
ils

30
31

.7
10

 0
00

 m
2

48
2

12
69

.0
/2

64
46

.9
/1

2
12

97
.1

/1
64

62
.6

/2
2

12
25

.6
/3

65
53

.0
/3

N
ek

ol
a 

20
10

SW
 N

or
th

 
A

m
er

ic
a

M
on

ta
ne

 
fo

re
st

La
nd

 s
na

ils
84

1.
1 

km
10

 0
00

 m
2

14
2

10
4.

9/
1

26
.4

/2
2

10
2.

9/
2

26
.3

/1
2

95
.7

/3
41

.0
/3

M
cG

lin
n 

an
d 

Pa
lm

er
 2

01
1

O
kl

ah
om

a
Ta

llg
ra

ss
 

pr
ai

ri
e

V
as

cu
la

r 
pl

an
ts

15
.6

 k
m

10
0 

m
2

15
1

C
om

pa
ri

so
ns

 w
ith

 p
lo

t 
no

. 5
 o

nl
y

2
35

8.
0/

3
7.

8/
3

2
35

9.
8/

2
5.

6/
2

2
36

7.
5/

1
2

11
.0

/1
M

cG
lin

n 
an

d 
Pa

lm
er

 2
01

1
O

kl
ah

om
a

Ta
llg

ra
ss

 
pr

ai
ri

e
V

as
cu

la
r 

pl
an

ts
9 

yr
Se

as
on

 s
um

m
ar

y 
fo

r 
10

0 
m

2
10

Pl
ot

 n
o.

 5
 fr

om
 

19
97

–2
00

6
2

14
9.

5/
3

2
15

6.
7/

2
2

15
1.

0/
2

2
15

7.
2/

1
2

15
5.

6/
1

2
15

2.
2/

3
Sa

ue
r 

et
 a

l. 
20

11
N

or
th

 
A

m
er

ic
a

To
ta

l f
au

na
 

20
02

–2
00

7
B

re
ed

in
g 

bi
rd

s
61

39
.8

 k
m

~ 
16

 h
a

~ 
37

00
10

00
 d

ra
w

s 
fr

om
  

al
l p

ai
rw

is
e 

co
m

pa
ri

so
ns

2
96

8.
9/

2
2

86
87

.5
/2

2
10

84
.8

/1
2

86
98

.1
/1

2
87

8.
4/

3
2

84
05

.5
/3

H
. L

ea
se

 p
er

s.
 c

om
m

.
Se

vi
el

le
ta

 
LT

ER
D

es
er

t s
cr

ub
R

ob
be

r 
fli

es
19

3 
d

1 
d

26
20

06
 s

ea
so

n
2

17
3.

9/
3

12
89

.9
/3

2
23

1.
7/

1
12

69
.6

/1
2

22
7.

5/
2

12
75

.2
/2

F.
 O

ls
en

 p
er

s.
 c

om
m

.
R

oc
k 

Is
la

nd
 

Pr
es

er
ve

, 
Io

w
a

Ta
llg

ra
ss

 
pr

ai
ri

e
B

ut
te

rfl
ie

s 
an

d 
sk

ip
pe

rs

17
4 

d
2–

4 
h

38
19

90
 s

ea
so

n
2

71
3.

1/
3

33
01

.1
/3

2
74

1.
9/

1
32

44
.2

/1
2

71
8.

3/
2

32
77

.2
/2

N
ek

ol
a 

an
d 

B
ro

w
n 

20
07

C
on

ce
rt

 
se

tli
st

s
C

ow
bo

y 
Ju

nk
ie

s
68

56
 d

1 
sh

ow
33

19
87

 to
 2

00
6

2
89

4.
8/

3
2

45
59

.7
/3

2
92

1.
3/

2
2

46
57

.3
/2

2
10

47
.1

/1
2

49
10

.7
/1


w

w
w

.ih
oz

.c
om

/ 
Ph

is
hS

ta
ts

.h
tm

l
C

on
ce

rt
 

se
tli

st
s

Ph
is

h
60

70
 d

1 
sh

ow
18

19
83

–2
00

0
2

48
5.

5/
3

2
46

.5
/3

2
51

1.
5/

2
2

51
.0

/2
2

52
5.

5/
1

2
69

.9
/1

N
ek

ol
a 

an
d 

B
ro

w
n 

20
07

C
om

m
er

ci
al

ly
 

av
ai

la
bl

e 
va

ri
et

ie
s

G
ar

de
n 

Se
ed

 
In

ve
nt

or
y

23
 y

r
1 

G
ar

de
n 

Se
ed

 In
ve

nt
or

y
7

19
81

 to
 2

00
4

2
40

.4
/3

2
18

3.
4/

3
2

50
.4

/2
2

19
9.

4/
2

2
54

.4
/1

2
23

1.
6/

1

N
ek

ol
a 

an
d 

B
ro

w
n 

20
07

In
gr

ed
ie

nt
 

lis
ts

G
lo

ba
l 

cu
si

ne
s

16
50

0 
km

1 
et

hn
ic

 r
eg

io
n

10
2

12
6.

1/
3

2
45

3.
2/

3
2

12
8.

5/
2

2
45

4.
7/

2
2

13
6.

6/
1

2
45

6.
3/

1



318

domesticates now feature prominently in new world cuisines – 
e.g. wheat, cinnamon, anise, chickens and pigs in Mexico. 
The existence of public and private seed banks has also  
made it possible for ‘lost’ commercial varieties to be made 
available after absences of a few decades. And, it is also highly 
unlikely that either the Cowboy Junkies or Phish would be 
unable to play any song in their repertoire given more than a 
few days’ rehearsal. As a result, agents/events within the  
analyzed human systems tend to be drawn from a uniform 
pool, with absences being largely the result of occurrence 
holes or stochastic sampling effects. Such situations should – 
and do – lead to power-law community distance decay.

While we are unable to analytically prove that exponen-
tial community distance decay should be expected in situa-
tions where individual species joint-probability curves are 
also largely exponential, consideration of ci values for  
LaRoi and BBS in conjunction with Eq. 8 (the Taylor series 
expansion), helps explain this correspondence. Recall that 
convergence to exp(2Cd) is dependent upon how fast 
(Δid)n/n! converges to zero as n increases. Our empirical  
data (Fig. 3) indicate that the distribution of Δi (or equiva-
lently, ci) is strongly truncated on both tails, making the  
values of ci strongly centered around the mean. As a result ci 
(or more specifically Δi 5 ci 2 ci) is never larger than a small 
multiple of ci (e.g. 2–3 times). Second we note that ci  
is order-of-magnitude close to but slightly larger than 1/d 
such that cid is slightly greater than 1 (i.e. approximately in 
the interval [1,10] for most of the values of d in the decay 
curve graphs). Since, by tail truncation, Δi is never larger 
than 2ci or 3ci, then Δid also must fall in the range of  
roughly 1–10. Additionally note that (Δid)n/n! converges  
on zero quite quickly when Δid is in the range [1,10]. Also  
note Δid is less than 1 when d is close to zero, which  
also forces a fast convergence on zero. As a result, the Taylor 
series expansion necessitates a community distance decay 
function close to exp(2Cd) when species joint-probability 
occurrence is exponential and the distribution of ci values is 
strongly truncated and order of magnitude close to 1/d. 
While providing a numerically based understanding for  
the preponderance of observed exponential-like community 
distance decay, this analysis can not be construed as a general 
proof, as the end result is strongly dependent upon the  
form of the joint-probability decay curve and ci distribution 
properties.

These analyses also document two additional important 
additional insights regarding the nature of ecological  
communities. First, it is striking how similar the parame-
terized and predicted coefficients are between the true and 
weighted aggregate community distance decay function for 
large-scale data (Fig. 4; Table 1). This correspondence pro-
vides strong evidence of individualistic species sorting 
(Gleason 1926). Second, the different expected forms for 
distance decay within (power law) vs between (exponen-
tial) communities allows for an empirical test of the obser-
vational scales under which communities exist. For instance, 
in Panamanian tropical forest, strong power-law decay 
apparent at distances of 1 km or less indicate that samples 
are being drawn from within the same community. 
However, the exponential decay observed at distances of 
5–100 km indicates that at this larger scale different com-
munities are being surveyed.

However when community data is sampled at small grains 
or within a mostly uniform species pool at limited extents 
(BCI), exponential decay is a poorer describer of joint- 
probability decay with community distance decay exhibiting 
a power-law like form. This result was also replicated in  
the meta-analysis. Examples include: vascular plants within 
100 m2 quadrats along a 15.6 km extent in the Tallgrass 
Prairie Preserve in northeastern Oklahoma; canopy trees 
within 1 ha tropical forest stands along a 1 km extent at BCI, 
a 100 km extent in lowland Peru, and a 200 km extent in 
Belize; seasonal summaries for rodents within a 250 m2  
sample over a 25 yr extent in Portal, Arizona. While Iowa 
county butterfly faunas would appear a violation, with pow-
er-law decay being favored even though ~ 25% of the fauna 
reaching its range limit within the state boundary, it is  
also important to realize that range-limit species also tend to 
be rare. Since rare species do not exhibit a distance decay 
signal (Nekola and White 1999), they will not contribute 
greatly to the overall shape of the decay function. As a result, 
the observed power law shape is largely due to the ~ 75% of 
the fauna which is cosmopolitan.

Power-law community distance decay has also previously 
been shown to describe the variation of vascular plant com-
position at  10 km extents within Colorado subalpine 
meadows (Harte et  al. 1999) and for soil microbes over  
~ 1000 km extents in Australia (Green et  al. 2004). It is 
important to note in this latter example that because of  
their exemplary long-distance dispersal abilities (Green and 
Bohannan 2006) local microbe communities are likely  
drawn from a much more extensive and uniform species 
pool than would be the case for most macroscopic organism 
groups.

The predominance of power-law community distance 
decay in human-systems is also readily explained using this 
framework. Because of the immense human capacity to 
move ideas and goods across large spatial scales, and to store 
and retrieve data across long time periods, absolute range 
limits for commercial goods or ideas are likely not crossed at 
either planetary spatial extents or decadal time spans. For 
instance, global trade over the last 600 yr has allowed essen-
tially all domesticated crops to be available world wide. As  
a result, many new world domesticates are now common 
aspects in old world cuisines – e.g. tomatoes in Italian,  
chiles in Indian/Ethiopian/Chinese/Thai, while old-world 

Table 3. Contingency table of AIC rank vs functional form of the 
distance decay relationship. The smallest AIC value among the three  
functional forms was assigned a rank of ‘1’, the second smallest a 
rank of ‘2’, with the largest being assigned a rank of ‘3’. The first  
number in a cell represents the number of datasets achieving that 
given rank based on AIC values calculated from non-linear regres-
sion to mean, while the second represents the number achieving 
that rank based on quantile non-linear regression for tau  0.95.

Mathematical distance decay form

AIC rank Linear Exponential Power law

1 4/7 14/13 8/6
2 9/9 12/13 5/4
3 13/10 0/0 13/16

Fisher exact test for identical cell frequencies: p  0.00001966  
for non-linear regression to mean; p  0.00001374 for quantile  
non-linear regression.
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Since its popularization within ecological research over a 
decade ago, there has been a mismatch between theoretical 
models and empirical results of distance decay analysis. We 
hope the approach described within this paper helps resolve 
this conundrum. Specifically, sampling scales associated 
with small grain, limited extents, and absent/limited  
environmental gradients are expected to have power-law 
community distance decay, while sampling scales associated 
with large grain and strong environmental gradients are 
expected to have exponential community distance decay.
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